Ministry of Education and Science of the Republic of Kazakhstan

NC «L.N. GUMILYOV EURASIAN NATIONAL UNIVERSITY»

(NC «L.N. Gumilyov ENU»)

	UDC 517.51,  517.43

№ state registration:0118РК00685

Inv. № ________________
	                          APPROVED
         Vice Rector for Science and Innovation

          NC «L.N. Gumilyov ENU»
          _______________ G. Мerzadinova
          «____» ____________ 2020 


REPORT

ON SCIENTIFIC RESEARCH WORK

АР05130975 «Weighted functional spaces, weighted estimates of integral operators 

and their applications»
(final report)
	Project Supervisor, professor, 

Doctor of physical and math. sciences, professor
	______________________________
	R. Oinarov


Nur-Sultan 2020

LIST OF PERFORMERS

	Project Supervisor:

Chief  Researcher, 

Doctor of physical and math. Sciences, professor
	    _________________
	R. Oinarov

(introduction, chapters 1-5)

	Performers:
	
	

	Head  Researcher, 

Candidate of phys. and math.  
	    _________________

	А.А. Kalybay
(chapters 2-5)

	sciences
	
	

	
	
	

	Head Researcher, 

Candidate of phys. and math. sciences
	_________________

	A.M. Abylayeva
(chapter 1, conclusion)

	
	
	

	Head Researcher, 

PhD
	________________

	А.М. Temirkhanova 
(introduction, chapters 4,5)

	
	
	


	Senior Researcher, 

Candidate of phys. and math. sciences
	    ________________

	A.O. Baiarystanov

(chapters 2, 3) 

	
	
	

	Senior Researcher, 

PhD student
	________________

	S. Shaimardan 
(chapter 4)

	
	
	

	Junior Researcher, 

PhD student
	________________

	Zh.A. Keulimzhaeva
(chapter 3)

	
	
	

	Junior Researcher, 

PhD student
	________________

	B.K. Omarbayeva
(chapter 5)

	
	
	

	Norm controller
	_________________


	A.E. Moldakhmetova


ABSTRACT


Report of 63 pages, 102 sources, 2 appendixes.

WEIGHTED INEQUALITIES, INTEGRAL OPERATORS,  FRACTIONAL INTEGRATION OPERATOR, DISCRETE OPERATORS, BOUNDEDNESS, COMPACTNESS, LEBESGUE SPACE, SOBOLEV SPACE, HARDY TYPE INEQUALITIES, MULTYWEIGHTED SPACE, CONJUGATION, DISCRETE SPECTRUM,  Polar operators, OSCILLATION.
Object of the study: weighted inequalities, integral discrete operators,  fractional integration operator, quasilinear  operators, h- analogue of fractional inequalities, fourth order  differential equation,   difference equation, polar operators, embedding operator. 

The purpose of research is to study a number of important classes of integral operators in weighted spaces and a class of weighted smooth function spaces that allow describing the behavior of solutions of differential equations near the singularity domain
Methods of research: localization method, methods of function theory and functional analysis, method of discretization and an alternative method of transition to equivalent dual inequalities, the variational principle. 
Obtained results during of the project:
– weighted estimates of certain classes of integral operators in weighted function spaces; weighted estimates of quasilinear and weakly singular operators with variable limits; estimates of the weighted Lebesgue norm of the operators of fractional integration on a weighted Sobolev space and on the set of monotonic functions; weighted estimates of a class of quasilinear discrete operators in weighted sequence spaces for different values of the parameters;
the validity of discrete and integral Hardy inequalities with periodic weights and the best possible constants in these inequalities; the application of the discrete Hardy inequality to second order difference equation; analogues of Hardy type inequalities and reverse inequalities in h-discrete calculus; 

– characteristics of a weighted space with multiweighted derivatives and boundary behavior of functions; criteria of boundedness and compactness of the embedding of spaces with multiweighted derivatives; exact estimates of the norms of the embedding operators; equivalent norms of space with multiweighted derivatives; conditions for the density of smooth compactly supported functions; weighted estimates of functions in terms of its higher-order multi-derivatives under different boundary conditions; criteria of existence the trace of functions from space with multiweighted derivatives in a special point; 
– boundary value problems for singular differential equations and their spectral properties; criteria strong oscillation and non-oscillation of one class of differential equations of fourth order with intermediate members; in terms of boundary conditions closure of finite functions in weight Sobolev type space of second order are described; criterion of boundedness from below and discreetness of the spectrum for a class of polar operators; the establishment of the lower bound of the spectrum for a class of differential operators degenerating at zero and at infinity.

Scope the application: theory of operators, embedding theory, theory of differential equations, harmonic analysis, probability theory, spectral analysis of differential operators, numerical methods, theoretical physics, mechanics.  
РЕФЕРАТ
Есеп 63 б., 102 дерек көздері, қосымшалар 2.

САЛМАҚТЫ ТЕҢСІЗДІКТЕР, ИНТЕГРАЛДЫҚ ОПЕРАТОРЛАР, БӨЛШЕК РЕТТІ ИНТЕГРАЛДЫҚ ОПЕРАТОР, дискретті ОПЕРАТОРЛАР, ШЕНЕЛІМДІЛІК, КОМПАКТЫЛЫҚ, ЛЕБЕГ КЕҢІСТІГІ, СОБОЛЕВ КЕҢІСТІГІ, ХАРДИ ТИПТІ ТЕҢСІЗДІК, МУЛЬТИСАЛМАҚТЫ КЕҢІСТІК, ТҮЙІНДЕСТІК, СПЕКТРДІҢ ДИСКРЕТТІГІ, ПОЛЯРЛЫ ОПЕРАТОРЛАР, ТЕРБЕЛІМДІЛІК,
Зерттеу нысаны: салмақты кеңістіктердегі интегралдық операторлардың бірқатар маңызды кластарын және сингулярлық маңайдың жанында дифференциалдық теңдеулер шешімдерінің өзгеру барысын сипаттайтын мүмкіндік беретін тегіс функционалдық кеңістіктердің кластарын.
ҒЗЖ мақсаты: салмақты функционалдық кеңістіктердегі кейбір кластағы интегралдық операторларды салмақты бағалау, шектері айнымалы квазисызықты және әзсізсингулярлы операторларды салмақты бағалау және салмақты кеңістіктегі мудьтисалмақты туындының характеристикасын және шекаралық функцияның әрекетін табу, мудьтисалмақты туындылы енгізу кеңістіктерінің шенелгенділігі мен компактылығын орнату, енгізу операторларының нормасын нақты бағалауын зерттеу; 

Зерттеу әдістері: локализация әдісі, функционалдық талдаудың және функциялар теориясының әдістері, дискреттеу әдісі және дуальді теңсіздікке көшудің балама әдісі, варияциялық қағида.

Жобаны іске асыру кезінде алынған нәтижелер: 
– салмақты функционалдық кеңістіктердегі кейбір интегралдық операторлар класын салмақты бағалау; шектері айнымалы болатын квазисызықты және әлсіз сингулярлы операторларды  салмақты бағалау; салмақты Соболев кеңістігіндегі және монотонды функциялар жиынында бөлшек ретті интегралдық операторлардың Лебег нормасын салмақты бағалау; салмақты тізбектер кеңістіктерде кейбір квазисызықты дискретті операторлар класын салмақты бағалау; периодты салмақтары бар салмақты дискреттік және интегралдық Харди теңсіздіктері және осы теңсіздіктердің ең кіші константалары, сонымен қатар дискретті Харди теңсіздігінің теріс емес коэффициенттері бар  екінші ретті айырымдық теңдеулерге қолданылуы; бөлшек h-дискретті еспетеуде Харди типтес теңсіздіктің және кері теңсіздігінің аналогтары; 


– мультисалмақты туындылары бар салмақты кеңістіктердің сипаттамалары және функцияның шекарадағы өзгеру әрекеті, мультисалмақты туындылы енгізу кеңістігінің шенегендігі мен компактылығы; енгізу операторының нормасын нақты бағалау; мультисалмақты туындылары бар салмақты кеңістіктердің нормаларының эквиваленттігі; тегіс финитті функцияның тығыздығының шарттары; әртүрлі шекаралық шарттарда жоғары дәрежелі көп туындыларға қатысты функцияларды салмақты бағалау; ерекше нүктеде жоғары ретті мультисалмақты туындылары бар кеңістіктегі функциялардың салмақты туындылары және функциялардың шекарасында іздерінің бар болу критерийі;
– сингулярлы дифференциалдық теңдеулер үшін шектік есептер және олардың спектральдық қасиеттері; аралық мүшелері бар төртінші ретті дифференциалдық теңдеуі үшін күшті тербелімділік және тербелімсіздік критерийі; шекаралық шарттар терминінде екінші ретті үш салмақты Соболев типті кеңістікте компакт тұрағы бар функциялар жиынының тұйықтамасы сипатталады; төртінші ретті полярлық операторлардың бір класы үшін спектрдің дискреттігі және төменнен шенелу критерийі; нөлде және шексіздікте ерекшеленетін дифференциалдық операторлар бір класының спектрі үшін төменгі шекара орнатылды.
Қолдану облыстары: операторлар теориясы, енгізулер теориясы, дифференциалдық теңдеулер теориясы, гармоникалық талдау, ықтималдықтар теориясы, дифференциалдық операторлардың спектрлік анализі, сандық әдістер, теориялық физика, механика.
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INTRODUCTION
The final report contains the results for 2018-2020 for the Project " Weighted functional spaces, weighted estimates of integral operators and their applications" (IRN AP05130975) in the framework of the priority direction "Information, telecommunications and space technologies, scientific research in the field of natural sciences".

The purpose of the project is to study a number of important classes of integral operators in weighted spaces and a class of weighted smooth function spaces that allow describing the behavior of solutions of differential equations near the singularity domain.

To achieve this purpose, according to the calendar plan for 2018-2020, the project set three main tasks:

- weighted estimates of certain classes of integral operators in weighted function spaces (1-2 items of the calendar plan);

- characteristics of the weighted spaces with multiweighted derivatives and boundary behavior of functions (3-4 items of the calendar plan);

- Boundary value problems for singular differential equations and their spectral properties (5 item of the calendar plan).

Therefore, the calendar plan lists these tasks as items.

The final report contains the results of 2020, namely, this year, the spectral properties of singular differential equations, boundary conditions for linear differential equations with power degenerations, the equivalence of the norms of a space with multiweighted derivatives, discrete and integral weighted Hardy inequalities with the best constant, and its application and also the investigation of weighted estimates for some classes of Volterra type integral operators and one class of quasilinear discrete operators for different values ​​of parameters, namely discrete iterated Hardy type inequalities of were investigated.

The results of the previous first two years are presented in the interim reports of the project for 2018, inventory number 0218RK00396; for 2019: inventory number 0219RK00265.

Below a brief overview of the research work is presented, which is done during the project implementation period
During the project implementation period, a number of important classes of integral operators in weight function spaces were studied for the first problem, namely, weighted estimates of one class of singular, quasilinear integral operators on cones of non-negative, non-negative non-decreasing, and non-negative non-increasing functions for all acceptable parameter values; weighted estimates of quasilinear and weakly singular operators with variable limits; an exact analog of the Hardy weight inequality with the best constant in h-calculus.

In connection with the requests of quantum mechanics and quantum physics in mathematics, a new direction has been developing in recent years – fractional h-discrete calculus [1]-[4] with the corresponding algebra. Current issues in h-calculus are finding analogs of operators, integral transformations, inequalities, and other objects which have great importance in classical analysis, as well as determining the best constants in integral inequalities. In addition, due to the importance of the Hardy integral operator in various applications, weighted inequalities for this operator and its generalizations in various continuous and discrete function spaces are being intensively studied. However, not all spaces produce exact analogs of the classical results on the weighted estimation of the Hardy integral operator. During the project implementation period, the performers investigated the integral inequality of the Hardy type with power weight functions in fractional h-discrete calculus and the inverse integral inequality of the Hardy type with power weight functions, as well as finding their best constants, and obtained the following results: analogs of the Hardy type inequality and the inverse Hardy type inequality in fractional h - discrete calculus for 
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These results are presented in section 1 of the interim report 2018 and published in the rating Journal of Inequalities and Applications (Web of Science if JCR: 1.47, quartile Q1), [1] Appendix A.


The need for many applied and theoretical problems leads to study of integral operators in weighted spaces. However, in the theory of integral operators, in general, the problem of describing the boundedness and compactness of operators in terms of their kernels and finding the exact values of their norms in given spaces is not solved. Therefore, it is important to identify a class of operators that meet the needs of a number of analysis problems, to obtain necessary and sufficient conditions for their boundedness and compactness in classical and other spaces, and to evaluate their norms. This direction of research began to develop strongly, starting from the 70-80 years of the last century after the fundamental works of G. Talenti [5], G. Tomaselli [6], V.G. Mazya [7], V.M. Kokilashvili [8], J.S. Bradley [9], B. Mackenhoupt [10], [11], B. Mackenhoupt and R.L. Wheeden [12], [13], E. T. Sawyer [14]-[16] and others, who established the necessary and sufficient conditions boundedness of Hardy operators, maximal operators in Lebesgue weight spaces, and estimates of their norms. This area of research has been further developed in monographs, for example, [17]-[22] and in numerous articles, for example, [23]-[27]. In this direction, the project performers investigated the weighted estimate for a singular operator of the form
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The estimate (2) is equivalent to the boundedness of the operator (3) from 
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 where C is the best constant in (2). The question of the boundedness of the conjugate operator to operator (3) in Lebesgue spaces for different values of the space parameters is also investigated. In addition, the compactness properties of operators (2) and (3) were considered. These results are given in section 2 of interim reports 2018 and have been published in the rating journal Mathematical Inequalities and Applications (Web of Science  IF JCR: 1,51 (2019), quartile Q1), [2] (Appendix A).

In the last decade, weight estimates of various classes of quasilinear integral operators have been intensively studied [28]-[36], which have important applications in the evaluation of operators in Morrey-type spaces and in the evaluation of bilinear operators in Lebesgue weighted spaces. At the initial stage, quasilinear operators were some iteration of Hardy operators with degrees. Various methods of discretization and anti-discretization have been developed for the weight estimation of such operators, thanks to which the necessary and sufficient conditions for the desired estimation have been obtained. In further studies, the structure of bilinear integral operators included integral operators with a kernel. When evaluating such quasilinear operators, we used conditions for the boundedness of the integral operator in a suitable space, which is not always possible, and the conditions obtained by the discretization method were difficult to discern. Therefore, the project performers developed a new approach for evaluating quasilinear integral operators with a kernel that does not require a specific boundedness condition for the integral operator and the evaluation conditions are expressed not in local, but in global terms of the data of the quasilinear operators under study. The project performers investigated the following type of estimates
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on the sets of non-negative, non-negative, and non-increasing, non-negative, and non-decreasing functions (
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, respectively. This means that we can find the conditions for the fulfillment of inequalities (4) and (5) only if we know the values 
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 The following necessary and sufficient conditions for the fulfillment are obtained:


– weighted estimates (4) and (5) on the set of non-negative functions for 
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– weighted estimates (4) and (5) on the set of non-negative non-increasing functions for 
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– weight estimates of (4) and (5) on the set of non-negative non-decreasing functions for 
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These results are given in section 3 of the interim report 2018 and an article was published on them in the journal Izvestiya RAS, mathematical series (Web of Science: IF JCR: 1.13, quartile Q2), [3] appendix A.


In addition, we investigated the conditions for performing weight estimates of quasilinear integral operators of the following types 
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with a kernel 
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 satisfying the Oynarov condition [37], [38]. In the course of the study, it turned out that weighted estimates of quasilinear operators have good applications in various analysis problems. Problems (6)-(7) when 
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– necessary and sufficient conditions for the fulfillment of inequalities (6), (7) for 
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, alternative to the conditions found earlier. These results are given in subsection 1.1 of section 1 of the interim report 2019 and published in the rating journal Siberian Mathematical Journal (Web of Science IF JCR: 0.705, quartile Q3), [12] appendix A.


For the first task of the calendar plan, we also obtained results on the boundedness of the integral operator of the following form
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from the Sobolev weight space to the Lebesgue weight space at 
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. In modern questions of mathematics, the Sobolev weight space plays an important role. Of course, the results of boundedness of integral operators in Sobolev weight spaces would have no less application than in Lebesgue weight spaces. However, the complexity of the norm in Sobolev weight spaces and the inapplicability of the methods used in Lebesgue weight spaces make it difficult to study integral operators in them. We are pioneers in this direction. There are two early papers [39], [40] by the project Manager, where the criterion of boundedness of integral operators (8) from the Sobolev weight space to the Lebesgue weight space was obtained. Note that if the kernel of operator (8) is differentiable by the first argument, then the question of the boundedness of the integral operator (8) in 
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 [40]. In the above works, there were some restrictions on weight functions. These restrictions are completely removed here. 
These results were given in subsection 1.2 of section 1 of the interim report 2019  and were published in the rating journal Turkish Journal of Mathematics (Web of Science IF JCR: 0.658, quartile Q3), [13] appendix A.

In addition, the project performers investigated a certain class of integral operators with variable limits of the form
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Operators of the form (9) have numerous applications; for example, the result on the boundedness of integral operators (8) from the Sobolev weight space to the Lebesgue weight space is significantly used in results on the boundedness of operators (9) in Lebesgue weight spaces. A whole book [41] devoted to various properties of operators (9) has recently been published. Many works, including those of the performers of this project, are devoted to the problems of limitation and compactness of operators (9) in Lebesgue weight spaces. Along with weight Lebesgue spaces are of great importance to the study of integral operators in weighted spaces of Lorentz. Therefore, the problem of investigating operators (9) on the cone of monotone functions arises. However, when the function 
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 satisfies the Oynarov condition, where the boundedness criterion of operators (9) in Lebesgue weight spaces is obtained. In this project, the necessary and sufficient conditions for the fulfillment of weight inequalities are obtained.
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for a wide class of functions, covering and Oynarov conditions, where 
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 functions. These results were given in subsection 2.1 of section 2 of the interim report 2019 and were published in the Journal of Mathematical Inequalities (Web of Science IF JCR: 1,219, quartile Q1), [14] appendix A.

Also we give results on the boundedness in Lebesgue weight spaces of a weakly singular operator with an upper variable limit in the form
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where 
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[image: image60.wmf]w

p

L

,

 to  
[image: image61.wmf]v

q

L

,

 when 
[image: image62.wmf]¥

£

<

<

1

q

p

, 
[image: image63.wmf].

0

,

1

1

³

<

<

b

a

p

 These results were given in subsection 2.2 of section 2 of the interim report 2019 published in the domestic journal recommended by the CCSES [22] appendix A.

In recent years, due to the development of quantum calculus, many mathematicians began to intensively develop q and h -calculus. Applied calculus of quantum queries required analogues of different inequalities in the theory of functions and functional analysis. As for applications in various fields of mathematics, we refer to [42]-[46] and references in them. As is known, at the initial stage of development of the generalized derivative function, the order of the derivative was an integer. However, the applications required an adequate definition of the fractional derivative. In this connection, the so-called fractional inequality arose. During the project implementation period, the contractor established an exact analog of the hardy type fractional order inequality in h-calculus. These results are given in subsection 3.1 of section 3 of the interim report 2019  and are published in the rating journal Mathematical Inequalities and Applications (Web of Science: If JCR: 1.51, quartile Q1), [15] appendix A.

It is known that mathematics is encouraged to obtain different alternative results for the same problem, since it is convenient to use suitable alternative results in different applications. For example, in the theory of integral operators, there are various alternative methods for obtaining their boundedness. Along with integral operators, matrix operators are of great use. However, alternative methods for matrix operators are poorly developed. Filling this gap, in subsection 3.2 of section 3 of the interim report 2019, further presents the results of the so-called key Lemma that allows to obtain the alternative results in the problem on boundedness of matrix operators in the space of sequences, besides implementing the project additionally researched and provided (subsection 5.1) alternative criteria for boundedness of Volterra type integral operators in Lebesgue spaces, the kernel of which belongs to the class  
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. Also this year by the first task the research was continued and weighted estimates for one class of quasilinear discrete operators were obtained for various values of the parameters, namely, discrete iterative Hardy-type inequalities. All these results are published in the rating journal  Mathematical Inequalities and Applications  and 7 articles are published in domestic journals, which recommended by the CCSES [23], [24], [50], [53], [54], [55], [56], [57] appendix A.

Mathematical results become even more important if they have different applications. Thus, in implementation period of the project, we present results on the oscillation properties of a second-order semilinear difference equation obtained on the basis of the previously obtained result on weight difference inequalities [47]. Here, for the equation
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we obtain necessary and sufficient conditions for conjugacy, non-conjugacy, and oscillation, and non-oscillation, where 
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 are sequences of real numbers. These results are given in subsection 2.3 of the interim report 2019 and based on these results, 2 articles were published in the domestic journal which recommended by the CCSES [25], [26] appendix A.

During the reporting period the project performers established the validity of the weight discrete and integral hardy inequalities with periodic weights, and found the best possible constants in these inequalities (section 4). Applying the established discrete Hardy inequality to a second order difference equation with nonnegative coefficients of the following form
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some results of oscillation and non-oscillation of this difference equation are obtained. These results are published in the rating journal of the Korean Mathematical Society (Web of Science IF JCR: 0.63, quartile Q3), [51] appendix A.
In addition, the results of three related tasks are presented. Here the second task is the key. Let 
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The following inequality is considered
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To investigate the inequality (11), it is necessary to find out what property functions from the space 
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Based on this result, in subsection 2 of the interim report 2019, a criterion for the fulfillment of inequality (11) is obtained. In addition the redefined weight inequality of the Hardy type in the differential form of the following form is investigated
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(13)

Problem (13) is redefined, since there are three boundary conditions for the functions, and the order of the equation is two. In the case of 
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, the inequality (13) is investigated in several papers, and in the form of (13) – for the first time. These results are published in domestic journals, which recommended by the CCSES [27] appendix A. 
The fifth section of the interim report 2019 presents results concerning the second problem of characterizing a weighted space with multi-weight derivatives and the boundary behavior of functions, as well as establishing continuity, compactness of embedding spaces with multi-weight derivatives, accurate estimates of the norms of embedding operators, and equivalence of the norms of a space with multi-weight derivatives. Let  
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 is obtained. 
These results are published in the domestic journal, recommended by the CCSES [28] appendix A.

In function spaces with derivatives, the classical problem is the problem of the existence of traces of functions and their derivatives on the boundary of the domain. In the subsection 5.2  paragraph of the interim report 2019, we present the results of the existence of finite limits 
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. These results are published in the domestic journal, recommended by the CCSES  [58] appendix A.

It is known that if different functionals of equivalent norms of this space are set in a functional space, this gives a great advantage when studying different problems in this space, since it is convenient to use one norm for studying one problem, and another for studying another problem. Therefore, the establishment of various equivalent norms in a space with multi-weight derivatives is an important classical problem in the theory of functional spaces. During the project implementation period in 2020 the performers investigated such a problem in a single multi-weight space, the results are given in section 4 and are published in the domestic journal recommended by the CCSES [59] appendix A.
In addition, the project investigates a Kudryavtsev-type space whose norm contains a differential operator called a multi-weighted derivative. This type of spaces is studied in detail for power weights. Here the performers of the project consider the total weight. The main result in this direction is the proof of the existence of a generalized polynomial to which the functions of this space are stabilized at a singular point, so that the coefficients of this polynomial can be considered as characteristics of the behavior of the function near this singularity point. These results are published in the Eurasian Mathematical Journal (Scopus CiteScore (2019): 0.8; percentile 37%) [17] appendix A.

During the project implementation period, the project performers studied boundary value problems for singular differential equations and their spectral properties, namely, the formulation of boundary problems, lower boundedness in weight space, discreteness of the spectrum, and the lower bound of the spectrum, as well as other characteristics of a class of differential operators that are degenerate (singular) at infinity and at zero. As an application of the results of inequality (13) for 
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, using the well-known variational principle of non-oscillation for linear differential equations in divergent form, the signs of strong oscillation and non-oscillation for a fourth-order differential equation in divergent form are established
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In space 
[image: image144.wmf])

(

2

I

L

, we define a differential operator 
[image: image145.wmf]0

A

 with a domain 
[image: image146.wmf]¥

=

0

0

)

(

C

A

D

 and an action 
[image: image147.wmf].

),

(

)

(

),

(

0

2

0

¥

Î

Î

=

o

C

y

I

L

y

l

y

l

y

A

 It is known that all self-adjoint extensions 
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1 Boundary value problems for singular differential equations and their spectral properties
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It is known that all self-adjoint extensions 
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 of the minimal operator have similar spectra [49]. Consider some spectral characteristics of the operator 
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Relationship between the oscillatory properties of the equation
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Lemma А [48] Operator 
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Doing the same as in work [53], we have
Lemma 1.1 The equation (1.1) strongly non-oscillatory if and only if, when for any 
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The statement of boundary value problems for operator 
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Theorem 1.1 If  (1.4) holds, then 
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Theorem 1.2 Let (1.4) holds. Then inequality (3) is satisfied if and only if 
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We assume
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Lemma 1.1 and Theorem 1.2 implyт
Theorem 1.3 If condition (1.4) is satisfied, then  equation (1.1) is strongly non-oscillatory if and only if
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and
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Now, from Theorem 1.3 on the basis of Lemma 1.1, we have 

Theorem 1.4. If condition (1.4) holds, then the operator 
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for the smallest eigenvalue 
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(ii) operator 
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And also investigated other characteristics of one class of differential operators degenerate at zero.
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Doing the same as in work [R. Oinarov, S. Y. Rakhimova, '' Oscillation and nonoscillation of two terms linear and half-linear equations of higher order'', Electron. J. Qual.  Theory Differ. Equ. 2010 Vol.2010, No. 49,ь1-15], we have
Lemma 1.2 Equation (1.1) is strongly non-oscillatory if and only if for any 
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The statement of boundary value problems for an operator 
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Theorem 1.8  Let it be satisfied (1.10). Then  
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Now, knowing the boundary behavior of the function from 
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Lemma 1.1 and Theorem 2 imply
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and 

[image: image327.wmf].

0

)

(

)

(

)

(

lim

)

,

1

(

lim

1

'

1

2

1

0

0

2

0

=

÷

÷

ø

ö

ç

ç

è

æ

=

ò

ò

ò

-

-

®

®

+

+

y

y

z

y

y

y

dt

t

v

dz

dx

x

r

z

u

y

A

                (1.12)

Note that the theory of oscillations of differential equations contains the so-called "reciprocity principle". Let the functions 
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simultaneously non-oscillatory.

Now, applying Theorem 1.9 to equation (1.13), we obtain new criteria for the strong non-oscillatory nature of the equation (1.1).

An analogue of condition (1.10) for equation (1.13) is 


[image: image332.wmf]ò

¥

=

T

dt

t

u

0

.

)

(

                                                   (1.14)

Therefore, based on Theorem 1.9, we have

Theorem 1.11 If condition (1.14) is satisfied, then equation (1.1) is strongly non-oscillatory if and only if 
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Now, from Theorems 1.9 and 1.10, on the basis of Lemma 1.2, we have 
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Theorem 1.15  Suppose that (1.10), (1.11), (1.12) or (1.14), (1.15) and (1.16) holds. Then 
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По этим результатам подготовлена статья и сдана в печять.
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2 Boundary value conditions for linear differential equations with power degenerations

Let us consider the following nth order linear differential equation:
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Using this set of numbers 
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We call this differential operation (or operator) 
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The idea to study function spaces with the purpose to apply them to different problems concerning differential equations appeared in works by Sobolev in the thirties. From this time the theory of Sobolev spaces has been developed to be a very powerful instrument for solving boundary value problems of differential equations. Moreover, such concept as a “weight function” was introduced to take care of different problems connected to singularities. Correspondingly, Kudryavtsev presented a fairly complete theory of onedimensional Sobolev spaces with power weights [49]-[56] and the references given there). He considered a space 
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The proofs of lemmas 2.1, 2.2 and  2.3 are given in paper [52] appendix А. 
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holds, where 
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Full proof of main result is given in paper [52] appendix A.
3  Equivalent norms of space with multiweighted derivatives

In the mathematical description of various processes in nature, technology, or in other fields, difficulties arise in connection with the irregular behavior of some part of this process. In this case, mathematics models this process in weighted functional spaces, where the weight somehow responds to the singular behavior of the processes under study.

If various functionals are established in a functional space that is equivalent to the norm of this space, then this gives great advantage when studying various problems in this space, since it is convenient to use one norm for studying one problem, and in another norm in another problem. Therefore, the establishment of various equivalent norms in the space under consideration is an important classical problem in the theory of functional spaces. Here, we study such a problem in one with multiweighted space.
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then from (3.2), (3.3), (3.4), (3.6), and (3.7) we have
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for all 
[image: image570.wmf])

(

,

I

W

f

n

p

r

Î

. Based on (3.8), the study of space 
[image: image571.wmf])

(

,

I

W

n

p

r

 is reduced to the study of spaces 
[image: image572.wmf])

(

0

,

I

W

n

p

r

 and  
[image: image573.wmf])

(

,

¥

I

W

n

p

r

. 

Moreover, by changing the variables 
[image: image574.wmf]x

t

1

=

, the function 
[image: image575.wmf])

(

,

¥

Î

I

W

f

n

p

r

 is transferred to the function 
[image: image576.wmf]R

x

f

x

f

®

÷

ø

ö

ç

è

æ

=

)

1

,

0

(

:

1

)

(

. Since 
[image: image577.wmf],

)

(

)

(

2

dx

x

f

d

x

dt

t

df

-

=

is that flat 
[image: image578.wmf]),

(

~

1

2

x

x

x

i

i

r

r

º

÷

ø

ö

ç

è

æ

 
[image: image579.wmf]1

...,

,

2

,

1

-

=

n

i

 and 
[image: image580.wmf])

(

~

1

'

2

x

x

x

n

n

p

r

r

=

÷

ø

ö

ç

è

æ

, we have 
[image: image581.wmf](

)

1

,...,

1

,

0

),

(

1

)

(

~

-

=

-

=

n

i

x

f

D

t

f

D

i

i

i

r

r

 and 
[image: image582.wmf].

0

,

~

,

I

p

n

I

p

n

f

D

f

D

r

r

=

¥


Therefore, the study of space 
[image: image583.wmf])

(

,

¥

I

W

n

p

r

 is equivalent to the study of space
[image: image584.wmf])

(

0

,

I

W

n

p

r

. 
Thus, in this section, we present the results and their proofs only for the interval
[image: image585.wmf]0

I

. In view of the above, these results can be easily extended to the case of an interval
[image: image586.wmf]¥

I

. Further, using (3.8), the set of results for the space 
[image: image587.wmf])

(

0

,

I

W

n

p

r

 and 
[image: image588.wmf])

(

,

¥

I

W

n

p

r

 can be generalized to the entire space
[image: image589.wmf])

(

,

I

W

n

p

r

.

For,  
[image: image590.wmf]1

,...,

1

,

0

,

-

=

n

j

i

 define the functions 
[image: image591.wmf]:

:

,

0

0

1

,

1

,

R

I

I

K

K

i

j

i

j

®

´

+

+



[image: image592.wmf]ò

ò

ò

+

+

+

+

-

+

-

-

-

-

-

+

-

=

x

s

t

s

t

s

j

i

i

i

i

j

j

j

j

i

j

i

j

j

i

dt

dt

dt

t

t

t

s

x

K

2

...

)

(

)...

(

)

(

)

1

(

)

,

(

2

1

1

1

1

1

1

1

1

1

,

r

r

r


and

[image: image593.wmf]ò

ò

ò

+

+

+

+

-

+

-

-

-

-

+

=

x

s

x

t

x

t

j

i

i

i

i

j

j

j

j

i

j

j

i

dt

dt

dt

t

t

t

s

x

K

2

...

)

(

)...

(

)

(

)

,

(

2

1

1

1

1

1

1

1

1

1

,

r

r

r

,

at 
[image: image594.wmf]1

)

,

(

)

,

(

,

1

,

1

,

º

º

>

+

+

s

x

K

s

x

K

j

i

i

i

i

i

 and 
[image: image595.wmf]0

)

,

(

)

,

(

1

,

1

,

º

º

+

+

s

x

K

s

x

K

i

j

i

j

 at
[image: image596.wmf]i

j

<

.  Assuming 
[image: image597.wmf]ò

ò

-

=

x

s

s

x

for any 
[image: image598.wmf]1

,

0

£

<

x

s

, we have 
[image: image599.wmf])

,

(

)

,

(

1

,

1

,

x

s

K

s

x

K

i

j

i

j

+

+

º

. 
We consider a polynomial in a system of functions
[image: image600.wmf]{

}

:

)

,

1

(

1

0

1

,

-

=

n

i

i

t

K


[image: image601.wmf]å

-

=

=

1

0

1

,

)

,

1

(

)

(

n

i

i

i

n

t

K

a

t

P

, where 
[image: image602.wmf]1

,...,

1

,

0

,

-

=

n

i

a

i

 - are real numbers.  
Definition 3.1 We say that a function 
[image: image603.wmf]n

p

W

f

r

,

Î

 goes to zero at a polynomial 
[image: image604.wmf]),

,

(

)

(

f

t

P

t

P

n

n

º

 if

[image: image605.wmf].

1

,...,

1

,

0

,

0

)]

,

(

)

(

[

lim

0

-

=

=

-

-

®

n

i

f

t

P

t

f

D

n

i

t

r





(3.9)
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is equivalent to the norm (3.2) of the space  
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The proof is given in the article by the performers [59] application A.
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Whence, by virtue of (3.14) and (3.15), we have
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then functional (3.14) is equivalent to the norm (3.2) of the space 
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The proof of the theorem is given in the article by the performers [59] application A.
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These results were published in a domestic journal recommended by CCSES [59] appendix A.  
4  Discrete and integral weighted Hardy inequalities with periodic weights 
In this section, we present the results on establishing the validity of the weighted discrete and integral Hardy inequalities with periodic weights, and the best possible constants in these inequalities, as well as the application of the discrete Hardy inequality to the second order difference equation with nonnegative coefficients. These results relate to the first task of the project and its application.
The classical Hardy inequalities are well known Theorems 326 and 327 in [70]:
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holds with the best constant 
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The history of the problem on Hardy's inequalities (4.1), (4.2), (4.4) and (4.5) and the results obtained are given in the books [71] - [73]. However, in the general case, the best constants in (4.4) and (4.5) have not been found. In the book [73], various cases are given when inequality (4.5) has specific best constants, in particular, the well-known weighted Hardy inequality [70]
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with the best constant 
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 Some attempts are known to establish a discrete analogue of inequality (4.6). For example, in [74] - [77] inequalities were established in the form
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with the best constant 
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Moreover, in [78], another analog of inequality (4.6) was established with the best constant in the following form
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The main aim of this section is to establish the weighted Hardy inequality in the form (4.4) and (4.5) with the best constant.
Weighted discrete Hardy inequality with the best constant
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Obviously, a non-negative 
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 holds with the best constant
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Moreover, in (4.8) the equality is reached only for the trivial sequence, i.e., when 
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 The proof of Theorem 4.1 is given in the paper [51] in appendix A.
Since the inequality (4.8) is equivalent to the inequality
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 then from Theorem 4.1 we have the following corollary.

Corollary 4.1  Let 
[image: image784.wmf]¥

<

<

1

p

 and 
[image: image785.wmf]0

>

k

v

 , 
[image: image786.wmf]1

³

"

k

. Let the sequences 
[image: image787.wmf]¥

1

=

}

{

=

k

p

k

p

u

u

 and 
[image: image788.wmf]¥

¢

-

¢

-

1

=

}

{

=

k

p

k

p

v

v

 belong to the class  
[image: image789.wmf]w

P

. Then for  any integer number 
[image: image790.wmf]1

³

m

 the inequality (4.11) holds with the best constant (4.9). Moreover, in (4.11) the equality is reached only for the trivial sequence., i. e.,when 
[image: image791.wmf]0

=

i

f

, 
[image: image792.wmf]1

³

"

i

.

If the inequality (4.11) holds for 
[image: image793.wmf]0

=

m

 with the best constant 
[image: image794.wmf]0

>

C

, then (4.10) holds. 

Oscillatory properties of a class of second order difference equations

Here we consider an application of Theorem 4.1 to the problem of oscillation and nonoscillation of the second order difference equation 
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with coefficients 
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Let us list notions and definitions required for the equation (4.12). Let 
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The equation (4.12) is called oscillatory if all its nontrivial solutions are oscillatory, otherwise it is called nonoscillatory.
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Based on Sturm's Theorem on the separation of zeros, equation (4.12) is oscillatory if there is an oscillatory solution
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The basic properties of the equation (4.12) are given in so–called “roundabout theorem”. This Theorem gives the equivalence of some four statements 
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If (4.13) holds, then (4.14) holds with the best constant
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Inversely, if (4.14) holds with the best constant (4.15), then (4.13) holds. Then, the following Lemma holds.
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Then, as shown in [79], [80] is true.
Lemma 4.3  Let 
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Moreover, the best constants in (4.14) and (4.17) coincide.

 Condition A. Suppose that the coefficients of the equation (4.12) satisfy the condition 
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On the basis of Corollary 4.1 the best constant in (4.18) is the value
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Due to (4.19) the condition (4.15) is equivalent to the condition
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Since the condition (4.20) does not depend  on 
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 is called the critical oscillation constant for the equation (4.12). 

Remark 4.2  If  the  sequences  
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and non-oscillatory when 
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Corollary 4.3 Let 
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 oscillatory when
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and non-oscillatory when
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Remark 4.1 When sequences 
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were marked as open problems.

Now we consider weighted integral Hardy inequality with best constant
Let 
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It is obvious that the nonnegative 
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Theorem 4.3  Let 
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holds with the best constant
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 Moreover, in (4.25) the equality is reached only for the trivial function.

If the inequality (4.25) holds for 
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The proof of theorem 4.3 is given in the article [51] appendix A.

Since under the conditions of Theorem 4.3 the inequality (4.26) is equivalent to the inequality
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then from Theorem 4.4 we get the following corollary.

Corollary 4.4 Let 
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If the inequality (4.28) holds for 
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These results are published in the journal (Journal of the Korean Mathematical Society) [51] appendix A.
5 Weighted estimates for some classes of integral and discrete operators in weighted function spaces

In this section, new results are presented as a continuation of the study on the first task of the project: results on weighted estimates for some classes of Volterra-type integral operators and one class of quasilinear discrete operators for different values of parameters, namely, discrete iterative Hardy-type inequalities.
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Obtaining alternative criteria for the boundedness of any operators is a very important problem of operator theory, since in some problems it is convenient to use one criterion, and in other problems another. In [95], various alternative criteria for the fulfillment of an inequality with the Oinarov’s condition were obtained. 
This paper is devoted to obtaining an alternative criterion for the fulfillment of inequality (5.1) when the kernel of operator (5.2) satisfies a more general condition than Oinarov's condition. 
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Main results:
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The next theorem follows from the results of [16].
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Here and below, the "sup" sign is understood as an essential supremum.

Now, under the conditions of Theorem A, we prove an alternative criterion for the fulfillment of inequality (5.1). 
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moreover, 
[image: image1002.wmf]{

}

C

B

B

»

2

1

,

max

 where 
[image: image1003.wmf]C

 is the best constant in (5.1). 
We prove Theorem 5.1 by the method of [92]. 

Proof of the main result and similar results for the dual inequality to inequality (5.1), as well as for operator (5.2) when the kernel 
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5.2 Weighted estimates for a class of quasilinear discrete operators  

The original form of Hardy’s integral inequality [98] from 1925 reads: If 
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It is easy to see that (5.7) implies the following discrete form of Hardy's inequality: 
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It has been a parallel development of (5.8) as what has been described above concerning the development of (5.7) to the theory of Hardy-type inequalities. Also in this case the development has been concentrated around mapping properties of the discrete Hardy operator between weighted 
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In recent years, after the publication of [100], it begun some new interesting research concerning discrete Hardy-type inequalities with weighted discrete Hardy operators involved (see e.g. [101]). In this paper we consider the following case:  
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 In the proofs of our main results we will need the following well-known results on the discrete weighted Hardy inequality inequality (see [74], [102]) and boundedness of matrix operators (see [11]-[12] or [15]). More exactly, see [74], Theorem 1 (viii) and also [21], Theorem 7 (iii).

The main results of this subsection:
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A complete proof of these results is given in [50] appendix A  

In addition, during the reporting period, a discrete inequality of the following form was considered 
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for the following cases: 
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Note that the result of case b) is especially interesting, since there is no integral analogue of inequality (5.112 in this case. 
Main results:

Theorem 5.5  (i) If  
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Moreover, 
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Theorem 5.6  Let 
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A complete proof of these results is given in the articles of the performers [56], [57] appendix A.
CONCLUSION
Research work on the project "Weighted functional spaces, weighted estimates of integral operators and their applications" (IRN AP05130975) corresponds to the planned schedule. The results of research can be used in the educational process for training specialists in mathematics, preparing master's and doctoral dissertations, as well as for further research in the theory of functions and functional analysis, the theory of operators, the theory of difference and differential equations.
During of the project the following results are obtained:

– weighted estimates of certain classes of integral operators in weighted function spaces; weighted estimates of quasilinear and weakly singular operators with variable limits;
estimates of the weighted Lebesgue norm of the operators of fractional integration on a weighted Sobolev space and on the set of monotonic functions; weighted estimates of a class of quasilinear discrete operators in weighted sequence spaces for different values of the parameters;
the validity of discrete and integral Hardy inequalities with periodic weights and the best possible constants in these inequalities; the application of the discrete Hardy inequality to second order difference equation; analogues of Hardy type inequalities and reverse inequalities in h-discrete calculus; 

– characteristics of a weighted space with multiweighted derivatives and boundary behavior of functions; criteria of boundedness and compactness of the embedding of spaces with multiweighted derivatives; exact estimates of the norms of the embedding operators; equivalent norms of space with multiweighted derivatives; conditions for the density of smooth compactly supported functions; weighted estimates of functions in terms of its higher-order multi-derivatives under different boundary conditions; criteria of existence the trace of functions from space with multiweighted derivatives in a special point; 

– boundary value problems for singular differential equations and their spectral properties; criteria strong oscillation and non-oscillation of one class of differential equations of fourth order with intermediate members; in terms of boundary conditions closure of finite functions in weight Sobolev type space of second order are described; criterion of boundedness from below and discreetness of the spectrum for a class of polar operators; the establishment of the lower bound of the spectrum for a class of differential operators degenerating at zero and at infinity.

During the implementation of the project 60 papers were published, including 12 scientific articles in journals with a non-zero impact factor included in the Web of Science and / or Scopus databases (6 articles in Q1, 1 article in Q2, 3 articles in Q3 and 2 articles in the database Scopus), 16 scientific articles in domestic journals recommended by CCSES, 2 articles in other domestic journals, The project performers are made 30 reports in 8 international conferences, congresses and scientific seminars (of which 7 reports abroad, 23 in the Republic of Kazakhstan), 2 articles were accepted for publication
The main consumers of the obtained results are employees of research institutes, teachers, doctoral students, graduates of higher educational institutions of Kazakhstan and other countries whose research works in the direction therefore these results can be implemented in the form of separate sections of elective disciplines of modular educational programs for magistracy, doctoral studies at universities.
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- publications in other foreign journals:

3  Oinarov R., Compactness of an integral operator in a weighted Sobolev space and a related spectral problem // Sbornik tezisov mejdunarodnoi nauchnoi konferencii «Spectral theory and related topics». –Ufa, –2018. –p. 127–128. (in Russian)
4  Temirkhanova A.M., Integral operator with variable intervals of integration on the cone of monotone functions // Sbornik tezisov mejdunarodnoi nauchnoi konferencii «Spectral theory and related topics». –Ufa, –2018. –p. 153–154. (in Russian)
5 Abylaeva A.M., Criterion for the compactness of an integral operator with a logarithmic kernel // Sbornik tezisov mejdunarodnoi nauchnoi konferencii «Spectral theory and related topics»– Ufa,, –2018. –p. 54–55. (in Russian)
Domestic publications:

6 Oinarov R., Abylaeva A.M., Weighted inequality and properties of one class of differential equations // Nauchnyy zhurnal Izvestiya Mezhdunarodnogo kazakhsko-turetskogo universiteta im. KH.A. Yasavi.–2018. –№ 1(4). –p. 76–80. (in Russian)
7 Temirkhanova A.M., Hardy-Steklov operator with kernel on the cone of monotone functions // Nauchnyy zhurnal Izvestiya Mezhdunarodnogo kazakhsko-turetskogo universiteta im. KH.A. Yasavi –2018. –№ 1(4). –p. 137–140. (in Russian)
8 Shaimardan S., Sadirova G.A., Weighted Hardy type inequality on time scale for the case 0<q<p<1 // Lomonosov – 2018: Materialy mezhdunarodnoy nauchnoy konferentsii studentov, magistrantov i molodykh uchenykh. –2018. –p. 36–37. 

9 Shaimardan S., Shaldybayeva A.D., Weighted estimates for Riemann-Liouville integral n times scale for the case 0<q<p<1 // Lomonosov – 2018: Materialy mezhdunarodnoy nauchnoy konferentsii studentov, magistrantov i molodykh uchenykh.–2018. –p. 43–44.

10  Shaimardan S., Sharip B.N. A Hardy-type inequality for fractional Riemann-Liouville integral in h-discrete fractional calculus // Lomonosov – 2018: Materialy mezhdunarodnoy nauchnoy konferentsii studentov, magistrantov i molodykh uchenykh. –2018. –p. 45–46. 

Publications in 2019


Foreign publications:


- publication in Web of Science and Scopus:
11 Kalybay A.A., Oinarov R. Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone functions // Izv. Math. -2019. –Vol. 83, № 2. –P. 251–272. (Web of Science:  Impact Factor JCR: 1.13   (2019), quartile Q2).
12  Kalybay A. Weighted estimates for a class of quasilinear integral operators // Siberian Mathematical Journal. -2019. –Vol. 60, № 2. –Р. 291-303. (Web of Science  Impact Factor JCR:  0.705 (2019), quartile Q3).
13 Kalybay A., Oinarov R. Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space // Turkish Journal of Mathematics. -2019. –Vol. 43, № 1. –P. 301-315. (Web of Science  Impact Factor JCR:  0,658 (2019), quartile Q3).

14  Kalybay A.A., Oinarov R., Temirkhanova A.M. Integral operators with two variable integration limits on the cone of monotone functions // Journal of Mathematical Inequalities. –2019. –Vol. 13, № 1. –P. 1-16. (Web of Science:  Impact Factor JCR: 1,219 (2019), quartile Q1).

15  Shaimardan S. Fractional order hardy-type inequality in fractional h-discrete calculus // Mathematical Inequalities and Applications. –2019. –Vol. 22, № 2. –P. 691-702. (Web of Science:  Impact Factor JCR: 1,51 (2019), quartile Q1).

16  Adiyeva A., Oinarov R. Weighted inequality and oscillatory properties of one class of fourth order differential equations // Nonlinear studies.  –2019. –Vol. 26, No. 4. –P. 741-753. (Scopus CiteScore 2019= 1,0, процентиль- 28%)

17  Kalybay A.A., Keulimzhayeva Zh.A., Oinarov R., On a Kudryavtsev type function space, Eurasian Math. J. -2019. –V. 10, № 4. –P. 34-46. (Scopus CiteScore 2019= 0,8, percentile- 37%)

- in other foreign publications: 

18 Abylayeva A.M.  Two-weighted Hardy type inequalities with logarithmic singularities// 30th International Workshop on Operator Theory and its Applications: Book of abstracts. –Lisbon, –2019. –P. 112.

19 Oinarov R. Oscillation and non-oscillation conditions of a class of fourth order differential equation  // 30th International Workshop on Operator Theory and its Applications: Book of abstracts. –Lisbon, –2019. –P. 160-161.
20 Abylayeva A.M.  Weighted Hardy type inequalities with a variable upper limit // 12th International ISAAC Congress. Volume of Abstracts. –Averio, Portugal, 2019. –P.  41.
21 Oinarov R. Boundedness of Riemann-Liouville operator from weighted Sobolev space to weighted Lebesgue space // 12th International ISAAC Congress. Volume of Abstracts. –Averio, Portugal, 2019. –P.  43.

Domestic publications:

- in domestic journals recommended by CCSES:

22 Abylaeva A.M., Seilbekov B.N. Boundeness of a fractional integrating operator  with a variable upper limit // Vestnik KazNPU im.Abaya. Seriya fiziko-matematicheskie nauki. –2019. -№ 3(67). –P. 7-11. (in Russian)
23 Kalybai A.A., Temirkhanova A. The key lemma in the question of the boundedness of matrix operators in weighted spaces // Vestnik KazNPU im.Abaya. Seriya fiziko-matematicheskie nauki –2019. -№ 3(67). –P. 38-43. (in Russian)
24 Temirkhanova A.M. Omarbaeva B.K., Weighted estamates of one class of quasilinear discrete operators: the case 
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// Vestnik KazNPU im.Abaya. Seriya fiziko-matematicheskie nauki. –2019. –№ 3(67). –P. 109-116. (in Russian)
25 Kalybai A.A., Karataeva D.S. Oscillatory properties of a second order half-linear difference equation of the with a sign of a changing coefficient //  Vestnik KazNPU im.Abaya. Seriya fiziko-matematicheskie nauki. –2019. -№ 4(68). –P. 42-48. (in Russian)
26 Kalybai A.A., Karataeva D.S. Conjugation and disconjugate second order half-linear difference equation at a specified interval // Vestnik KazNPU im.Abaya. Seriya fiziko-matematicheskie nauki. –2019. -№ 4(68). –P. 49-55. (in Russian)
27 Adieva A. Zh., Bayarystanov A.O. About one overdetermined weight inequality of hardy type in differential form // Vestnik Almatinskogo universiteta energetiki i svyazi. -2019.- №3(46). -p.89-95. (in Russian)
28 Bayarystanov A.O., Keulimzhaeva Zh.A. The continuity and compactness of the operator embedding spaces with multiweighted derivatives // Vestnik KazNPU im. Abaya. Seriya fiziko-matematicheskoye nauki –2019. -№ 3(67). –p. 19-25.  (in Russian)
29 Adieva A. Zh., Bayarystanov A.O. Strong oscillation and nonoscillation of one class of differential equations of fourth order // Vestnik KazNPU im. Abaya. Seriya fiziko-matematicheskoye nauki. –2019. -№ 4(68). –p. 7-12. (in Russian)
- in other domestic publications:

30 Adieva A., Oinarov R. Oscillatory properties of a two-term fourth-order differential equation // Problems of modeling processes in electrical contacts: Tezisy dokladov traditsionnoy mezhdunarodnoy aprel'skoy matematicheskoy konferentsii. – Almaty, -2019. – p. 46-47. (in Russian)
31 Kalybai A.A., Karataeva D.S. Oscillation properties of a class of quasilinear second-order difference equations // Problems of modeling processes in electrical contacts Tezisy dokladov traditsionnoy mezhdunarodnoy aprel'skoy matematicheskoy konferentsii. – Almaty, -2019. – p. 63-64. (in Russian)

32 Oinarov R., Kalybai A.A. Boundedness of a class of integral operators from a weighted Sobolev space to a weighted Lebesgue space // Problems of modeling processes in electrical contacts: Tezisy dokladov traditsionnoy mezhdunarodnoy aprel'skoy matematicheskoy konferentsii. – Almaty, -2019. – p. 64-65. (in Russian)
33 Omarbaeva B., Temirkhanova A. Weighted estimate for a class of quasilinear discrete operators // Problems of modeling processes in electrical contacts: Tezisy dokladov traditsionnoy mezhdunarodnoy aprel'skoy matematicheskoy konferentsii. – Almaty, -2019. – p. 75-76. (in Russian)
34 Abylaeva A.M., Seilbekov B.N. Boundedness of one class of fractional integration operator with variable upper limit // Teoreticheskiye i prikladnyye voprosy matematiki, mekhaniki i informatiki: materialy mezhdunarodnoy nauchnoy konferentsii. – Karagandy, -2019. – p. 25-26. (in Russian)
35 Beszhanova A., Temirkhanova A., Boundedness of one class of matrix operators with variable limits // Teoreticheskiye i prikladnyye voprosy matematiki, mekhaniki i informatiki: materialy mezhdunarodnoy nauchnoy konferentsii. – Karagandy, -2019. – p. 27. (in Russian)
36 Kalybai A., Keulimzhaeva Zh.A, Oinarov R. Space with multi-weight derivatives and an inequality of Nikol'skii - Lizorkin type // Teoreticheskiye i prikladnyye voprosy matematiki, mekhaniki i informatiki: materialy mezhdunarodnoy nauchnoy konferentsii. – Karagandy, -2019. – p. 31-32. (in Russian)
37 Omarbaeva B.K., Temirkhanova A.M. A weighted estimate for one class of quasilinear discrete operators: the case 
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 // Teoreticheskiye i prikladnyye voprosy matematiki, mekhaniki i informatiki: materialy mezhdunarodnoy nauchnoy konferentsii. – Karagandy, -2019. – p. 42. (in Russian)
38 Temirkhanova A.M. Discrete weighted Hardy-type inequality with three parameters // Teoreticheskiye i prikladnyye voprosy matematiki, mekhaniki i informatiki: materialy mezhdunarodnoy nauchnoy konferentsii. – Karagandy, -2019. – p. 44. (in Russian)
39 Kalybai A.A., Karataeva D.S., Oscillation properties of a class of second-order semilinear difference equations // Teoreticheskiye i prikladnyye voprosy matematiki, mekhaniki i informatiki: materialy mezhdunarodnoy nauchnoy konferentsii. – Karagandy, -2019. – p. 83-84. (in Russian)
40 Abylaeva A.M. Two-weighted estimate of an integral operator with a logarithmic singularity // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019) : the abstract book of International Conference. – Nur-Sultan, - 2019. –P. 13. (in Russian)
41 Adieva A.Zh., Bayarystanov A.O. On a predefined weighted inequality of Hardy type in differential form // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019): the abstract book of International Conference. – Nur-Sultan, - 2019. –P. 15-17. (in Russian)
42 Adieva A.Zh., Oinarov R., Sultanaev Ya.T. Weighted inequality and discreteness of the spectrum of a high-order polar operator // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019): the abstract book of International Conference.  – Nur-Sultan, - 2019. –P. 17-18. (in Russian)
43 Beszhanova A.T., Temirkhanova A.M. Boundedness and compactness of one class of matrix operators with variable limits of summation // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019) : the abstract book of International Conference. – Nur-Sultan, - 2019. –P. 22-23. (in Russian)
44 Keulimzhaeva Zh.A. Equivalent norms of a space with multi-weight derivatives // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019) : the abstract book of International Conference. – Nur-Sultan, - 2019. –P. 37-38. (in Russian)
45 Kalybay A.A., Oinarov R. Boundedness of Riemann - Liouville operator from weighted Sobolev space to weighted Lebesgue space // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019) : the abstract book of International Conference. – Nur-Sultan, - 2019. –P. 44.

46 Omarbayeva B.K. Weighted estimate of a class of quasilinear discrete operators // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019) : the abstract book of International Conference. – Nur-Sultan, - 2019. –P. 53-54.

47 Kalybai A.A., Karataeva D.S. Conjugate and non-conjugate properties of a second-order semilinear difference equation // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019) : the abstract book of International Conference. – Nur-Sultan, - 2019. –P. 113-114. (in Russian)
48 Shaimardan S., Tokmagambetov N.S. The Bessel equation in h-discrete calculus // Actual problems of Analysis, Differential equations and Algebra (EMJ-2019) : the abstract book of International Conference.  – Nur-Sultan, - 2019. –P. 164-165.

49 Sadirova G.A., Shaimardan S. Green's function for general two-point boundary value problems on a time scale // Lomonosov – 2019: sbornik tezisov XV Mezhdunarodnaya nauchnaya konferentsiya studentov, magistrantov i molodykh uchenykh. - Nur-Sultan, – 2019, - p. 33-34. (in Russian)
Publications in 2020

Foreign publications:

- в Web of Science и Scopus:
50  Omarbayeva B.K., Persson L -E., Temirkhanova A.M., Weighted iterated discrete Hardy-type inequalities // Mathematical Inequalities and Applications. –2020. – Vol. 23. - № 3. – P. 943-959. (Web of Science  Impact Factor JCR: 1,51 (2019), quartile Q1).
51  Kalybay A., Oinarov R., Weighted hardy inequalities with sharp constants. //  Journal of the Korean Mathematical Society. -2020. –Vol.‏ 57, №‏ 3. –P. 603-616. (Web of Science  Impact Factor JCR: 0,63 (2019), quartile Q3).
52 Kalybay A., Boundary value conditions for linear differential equations with power degenerations // Boundary value problems. –2020. –Vol. ‏ 2020, No 1. –P. 1-11. (Web of Science  Impact Factor JCR: 1,794 (2019), quartile Q1)

Domestic publications:

- in domestic journals recommended by CCSES:
53 Kalybai A.A., Temirkhanova A., Boundedness of one class of the matrix operators in weighted spaces of sequences // Vestnik KazNPU im. Abaya. Seriya fiziko-matematicheskoye nauki –2020. -№ 1(69). –p. 128-133. (in Russian)
54 Kalybai A.A., Criteria of boundedness of one class of Volterra type integral operators in weighted Lebesgue spaces // Vestnik KazNITU.  –2020. -№ 2(138). –p. 677-682. (in Russian)
55 Kalybay A.А. Alternative criteria of boundedness of Volterra type integral operators in Lebesgue spaces // Vestnik KazNITU. –2020. –№ 3(139). –P. 598-603. (in Russian)
56 Oinarov R., Omarbayeva B.K., Temirkhanova A.M., Discrete iterated Hardy-type inequalities with three weights // Journal of Mathematics, Mechanics, Computer Science. –2020, № 1(105). –P. 19-29.

57 Temirkhanova A.M., Omarbayeva B.K., Weighted estimate of a class of quasilinear discrete operators: the case 
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// Vestnik KazNRTU. –2020, № 4 (140). –Р. 588-595.
58 Kalybai A.A., Keulimzhaeva Zh.A. Conditions of existence the trace of functions from space with multiweighted derivatives in a special point // Vestnik KazNPU im. Abaya. Seriya fiziko-matematicheskie nauki –2020. –№ 1(69). –P. 123-128. (in Russian)
59 Kalybai A.A., Keulimzhaeva Zh.A. Equivalent norms of space with multiweighted derivatives // Vestnik KazNITU.  –2020. –№ 2(138). –P. 699-707. (in Russian)
60 Adieva A. Zh., Bayarystanov A.O. Closure of finite functions in one weighted Sobolev-type space // Vestnik KazNPU im. Abaya. Seriya fiziko-matematicheskie nauki –2020. –№ 1(69). –P. 12-17. (in Russian)
- publications issued in print:

1 Kalybai A.A., Keulimzhaeva Zh.A., Oinarov R. On the density of compactly supported functions in a space with multi-weight derivatives // Tr. MIAN. (in Russian)
2 Temirkhanova A.M., Beszhanova A.T., Boundedness and compactness of a certain class of matrix operators with variable limits of summation. Eurasian Mathematical Journal 
APPENDIX B

Calendar work plan

TECHNICAL SPECIFICATIONS AND 

CALENDAR WORK PLAN
Under contract no _____ dated __________________2018

1. Republican state enterprise on the right of economic management "L.N. Gumilyov Eurasian National University" of the Ministry of Education and 

Science of the Republic of Kazakhstan "
1.1 By priority: 3. Information, telecommunication and space technologies, scientific research in the field of natural sciences.
1.2 By sub-priority: 3.6 Scientific research in the field of natural sciences.
1.3 On the topic of the project: № AP05130975, «Weighted functional spaces, weighted estimates of integral operators and their applications».
1.4 Total project amount 30 000 000 (thirty million) tenge, including with a breakdown by years, to perform work in accordance with paragraph 3:

- for 2018 - in the amount of 10 000 000 (ten million) tenge;

- for 2019 - in the amount of 10 000 000 (ten million) tenge;

- for 2020 - in the amount of 10 000 000 (ten million) tenge.
2. Characteristics of scientific and technical products by qualification characteristics and economic indicators
2.1 Direction of work: Physics and mathematics.
2.2 Application: Education and Science.
2.3 Final result:
- for 2018: Estimates of the weighted Lebesgue norm of the operators of fractional integration on a weighted Sobolev space and on the set of monotonic functions;
- for 2019: Weighted estimates of quasilinear and weakly singular operators with variable limits; The boundedness and compactness of the embedding of spaces with multiweighted derivatives, exact estimates of the norms of the embedding operators;
- за 2020 год: Conditions for the density of smooth compactly supported functions; Weighted estimates of functions in terms of its higher-order multi-derivatives under different boundary conditions; The study of certain classes of singular differential operators. The formulation of boundary problems at the singular point of the considered operators, the study of the boundedness from below of these operators in weighted spaces, the establishment of the lower bound of the spectrum and various spectral characteristics. 

3 (three) articles will be published in in peer-reviewed foreign scientific journals, indexed in databases Web of Science or Scopus with a non-zero impact factor and at least 2 (two) publications in peer-reviewed foreign and domestic scientific journals with a non-zero impact factor.
2.4 Patentability: not expected.

2.5 Scientific and technical level (novelty): weighted estimates of integral operators in functional spaces and properties of multi-weight spaces of smooth functions of the Kudryavtsev-Sobolev type; behavior of functions, differential operators near the singularity region.
2.6 The use of scientific and technical products is carried out by: students of mathematical specialties of L.N. Gumilyov Eurasian National University. Shared use according to the legislation of the Republic of Kazakhstan.
2.7 Type of use of the result of scientific and (or) scientific and technical activities: in the educational process and scientific research.

3. Name of work, terms of their implementation and results
	Task code, stage
	Name of work under the Agreement and the main stages of its implementation
	Period of execution


	Expected Result



	
	
	start


	ending


	

	1
	Weighted estimates of certain classes of integral operators in weighted function spaces
	January 2018
	1 November 2018
	Weighted estimates will be obtained for some classes of integral operators in weighted function spaces, as well as estimates for the weighted Lebesgue norm of fractional integration operators on a weighted Sobolev space  on the set of monotonic functions

	2
	Weighted estimates for some classes of integral operators in weighted function spaces
	January 2018
	June 2019
	Weighted estimates of some classes of integral operators in weight functional spaces, weight estimates of quasilinear and weakly singular operators with variable limits will be obtained

	3
	Characteristics of a weighted space with multiweighted derivatives and boundary behavior of functions  
	July 2019
	1 november 2019
	The characteristics of a weighted space with multiweighted derivatives and the boundary behavior of functions, as well as the boundedness and compactness of the embedding of spaces with multiweighted derivatives, and exact estimates for the norms of the embedding operators

	4
	Characteristics of a weighted space with multiweighted derivatives and boundary behavior of functions
	January 2020
	June 2020
	The characteristics of a weighted space with multiweighted derivatives and the boundary behavior of functions, conditions for the density of smooth compactly supported functions, weight estimates of functions in terms of its  higher-order multi-derivatives under different boundary conditions will be established. 

	5
	Boundary value problems for singular differential equations and their spectral properties 
	July 2020
	1 november 2020
	Boundary value problems for singular differential equations and their spectral properties will be investigated.
Some classes of degenerate differential operators will be studied, as well as the statement of boundary value problems at the degeneration point of the operators under consideration, the boundedness of these operators in weighted spaces from below will be investigated, as well as the establishment of the lower bound for the spectrum and various spectral characteristics.
During the implementation of the Project 3 (three) articles will be published in in peer-reviewed foreign scientific journals, indexed in databases Web of Science or Scopus with a non-zero impact factor and at least 2 (two) publications in peer-reviewed foreign and domestic scientific journals with a non-zero impact factor.

	

	From customer:                                                            
The chairman
Public administration "Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan"
________________B. Abdrasimov
LS


	From the performer:

Vice-rector  

on science-research work RGP PHV “Eurasian National University” MES RK  

________________ G. Merzadinova
LS                
Familiarized:
Scientific supervisor of the project
___________________  R. Oinarov
(signature)
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